138 research outputs found

    Barriers to Curriculum Technology Integration in Education

    Get PDF
    Many barriers have been placed in the path of school curriculum reform involving technology

    Course-based Science Research Promotes Learning in Diverse Students at Diverse Institutions

    Full text link
    Course-based research experiences (CREs) are powerful strategies for spreading learning and improving persistence for all students, both science majors and nonscience majors. Here we address the crucial components of CREs (context, discovery, ownership, iteration, communication, presentation) found across a broad range of such courses at a variety of academic institutions. We also address how the design of a CRE should vary according to the background of student participants; no single CRE format is perfect. We provide a framework for implementing CREs across multiple institutional types and several disciplines throughout the typical four years of undergraduate work, designed to a variety of student backgrounds. Our experiences implementing CREs also provide guidance on overcoming barriers to their implementation

    Interference effects in the photorecombination of argonlike Sc3+ ions: Storage-ring experiment and theory

    Full text link
    Absolute total electron-ion recombination rate coefficients of argonlike Sc3+(3s2 3p6) ions have been measured for relative energies between electrons and ions ranging from 0 to 45 eV. This energy range comprises all dielectronic recombination resonances attached to 3p -> 3d and 3p -> 4s excitations. A broad resonance with an experimental width of 0.89 +- 0.07 eV due to the 3p5 3d2 2F intermediate state is found at 12.31 +- 0.03 eV with a small experimental evidence for an asymmetric line shape. From R-Matrix and perturbative calculations we infer that the asymmetric line shape may not only be due to quantum mechanical interference between direct and resonant recombination channels as predicted by Gorczyca et al. [Phys. Rev. A 56, 4742 (1997)], but may partly also be due to the interaction with an adjacent overlapping DR resonance of the same symmetry. The overall agreement between theory and experiment is poor. Differences between our experimental and our theoretical resonance positions are as large as 1.4 eV. This illustrates the difficulty to accurately describe the structure of an atomic system with an open 3d-shell with state-of-the-art theoretical methods. Furthermore, we find that a relativistic theoretical treatment of the system under study is mandatory since the existence of experimentally observed strong 3p5 3d2 2D and 3p5 3d 4s 2D resonances can only be explained when calculations beyond LS-coupling are carried out.Comment: 11 pages, 7 figures, 3 tables, Phys. Rev. A (in print), see also: http://www.strz.uni-giessen.de/~k

    Treatment of Patients with the Hypereosinophilic Syndrome with Mepolizumab

    Get PDF
    BACKGROUND The hypereosinophilic syndrome is a group of diseases characterized by persistent blood eosinophilia, defined as more than 1500 cells per microliter with end-organ involvement and no recognized secondary cause. Although most patients have a response to corticosteroids, side effects are common and can lead to considerable morbidity. METHODS We conducted an international, randomized, double-blind, placebo-controlled trial evaluating the safety and efficacy of an anti–interleukin-5 monoclonal antibody, mepolizumab, in patients with the hypereosinophilic syndrome. Patients were negative for the FIP1L1–PDGFRA fusion gene and required prednisone monotherapy, 20 to 60 mg per day, to maintain a stable clinical status and a blood eosinophil count of less than 1000 per microliter. Patients received either intravenous mepolizumab or placebo while the prednisone dose was tapered. The primary end point was the reduction of the prednisone dose to 10 mg or less per day for 8 or more consecutive weeks. RESULTS The primary end point was reached in 84% of patients in the mepolizumab group, as compared with 43% of patients in the placebo group (hazard ratio, 2.90; 95% confidence interval [CI], 1.59 to 5.26; P CONCLUSIONS Our study shows that treatment with mepolizumab, an agent designed to target eosinophils, can result in corticosteroid-sparing for patients negative for FIP1L1– PDGFRA who have the hypereosinophilic syndrome. (ClinicalTrials.gov number, NCT00086658.

    A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication

    Get PDF
    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    International Nonregimes: A Research Agenda1

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146934/1/j.1468-2486.2007.00672.x.pd

    Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements

    Get PDF
    We present the results of dust emission polarization measurements of Ophiuchus-B (Oph-B) carried out using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) camera with its associated polarimeter (POL-2) on the James Clerk Maxwell Telescope in Hawaii. This work is part of the B-fields in Star-forming Region Observations survey initiated to understand the role of magnetic fields in star formation for nearby star-forming molecular clouds. We present a first look at the geometry and strength of magnetic fields in Oph-B. The field geometry is traced over ~0.2 pc, with clear detection of both of the sub-clumps of Oph-B. The field pattern appears significantly disordered in sub-clump Oph-B1. The field geometry in Oph-B2 is more ordered, with a tendency to be along the major axis of the clump, parallel to the filamentary structure within which it lies. The degree of polarization decreases systematically toward the dense core material in the two sub-clumps. The field lines in the lower density material along the periphery are smoothly joined to the large-scale magnetic fields probed by NIR polarization observations. We estimated a magnetic field strength of 630 ± 410 ÎŒG in the Oph-B2 sub-clump using a Davis–Chandrasekhar–Fermi analysis. With this magnetic field strength, we find a mass-to-flux ratio λ = 1.6 ± 1.1, which suggests that the Oph-B2 clump is slightly magnetically supercritical
    • 

    corecore